Victoria Linear Collider Workshop, 2004

DETERMINATIONS OF THE HWW AND HZZ COUPLINGS AT THE LHC AND AT A LC.

Edmond L. Berger Argonne National Laboratory July 29, 2004

- 1. Introduction & Motivation
- 2. Production Dynamics and WBF Cuts at the LHC
- 3. Signal Purity and Coupling Uncertainties at the LHC
- 4. Comparisons with LC estimates
- 5. Summary

E Berger and John Campbell, hep-ph/0403194, ANL-HEP-PR-04-4

Introduction and Motivation

- Assume a SM-like Higgs boson has been discovered, $115 < m_H < 200 \ {\rm GeV} \ {\rm at} \ {\rm the} \ {\rm Tevatron} \ {\rm or} \ {\rm the} \ {\rm LHC}, \ {\rm and}$ that a sample exists of H+2 jet events at the LHC
- ullet Want to use these data to determine the Higgs boson couplings ${\it g}$ to weak vector bosons, W and Z
- ullet Focus on two production subprocesses that contribute to H+2 jet events:

-
$$W+W \to H$$
 and $Z+Z \to H$ "WBF" - $g+g \to H$ "irreducible QCD background"

- Issue for the determination of couplings: How well can we resolve WBF production of H from QCD production of H?
- ullet Independent calculation of H+2 jet processes
 - to gauge the effectiveness of cuts used to select the WBF signal, and
 - to evaluate the accuracy with which coupling g can be determined in experiments at the CERN LHC

Introduction and Motivation (continued)

- Define Purity $P=\frac{S}{S+B}$ S is the number of signal H+2 jet events and B is the number of H+2 jet QCD background events both in the WBF region of phase space
- ullet Study Purity P of the signal vs p_T of the jets
- Evaluate uncertainty $\frac{\delta g}{g}$ of the coupling in terms of P $\frac{\delta N}{N}$ $\frac{\delta S}{S}$ and $\frac{\delta B}{B}$

H+2 Jet Production – Signal

• Higgs boson H production via WW scattering in NLO QCD. Ex:

- ullet QCD NLO calculation of H+2 jets with CTEQ6M parton densities; renormalization/factorization scale $\mu=m_H$
- Hard perturbative scale μ dependence $\sim 2\%$ for $\frac{1}{2}m_H < \mu < 2m_H$, and CTEQ PDF uncertainty $\sim 3\%$, both in the WBF region of phase space \rightarrow signal is calculated fairly reliably
- Events generated with the MCFM code
 J. Campbell & R. K. Ellis PRD65,113007 (2002)
- Independent results (dipole subtraction method) verify the NLO calculation of Figy, Oleari, Zeppenfeld, PRD68, 073005 (2003). K-factor $\sim 10\%$, with small variation over the phase space appropriate for the WBF signal

H+2 Jet Production – Irreducible Background

Higgs boson H production via gg scattering. Ex:

- ullet Fully differential NLO calculation of H+2 jet production does not exist; contribution computed at LO Kauffman Desai and Risal, PRD55, 4005 (1997); PRD58, 119901 (1998)
- ullet Effective ggH coupling included in the limit of $m_H\ll 2m_t$ and $p_T^H< m_t$ (c.f. Del Duca et al NP B616, 367 (2001))
- NLO enhancement (K) factor is needed in the region of the WBF cuts. It can be estimated from
 - inclusive NLO $gg \to H$ $K \sim 1.7-1.8$ Harlander & Kilgore PRD64, 013015 (2001); Anastasiou & Melnikov, NP B646, 220 (2002)
 - NLO gg o H + 1 jet $K \sim 1.3 1.5$ Ravindran, Smith, van Neerven NP B665, 325 (2003)
- Uncertainty: hard scale μ dependence

Event Characteristics

- ullet Hallmark of WBF events in hadron reactions is a Higgs boson accompanied by two "tagging" jets having large $p_T \sim \mathcal{O}(\frac{1}{2}M_W)$
- ullet QCD gg o H+2 jets generate a softer p_T spectrum
- The rapidity spectra for the WBF and QCD production mechanisms also differ, related to the fact that the gluon parton density (that plays a dominant role in the background) is softer than the quark density; figures shown on next slide
- The p_T spectrum of the Higgs boson is also relatively hard. All-orders resummed calculation Berger and Qiu PRD 67, 034026 (2003) provides $< p_T^H > \sim 35$ GeV at $m_H = M_Z$, growing to $< p_T^H > \sim 54$ GeV at $m_H = 200$ GeV
- ullet Require reliable QCD representation of Hjj for jets at large p_T . Hard matrix elements are needed. A showering approach for generating the momentum distributions of the jets would not suffice; showering yields softer jets and overestimates signal purity

H+2 Jet Production – Jet Rapidity Distribution

ullet Higgs boson ${\it H}$ production via WW and ZZ scattering in NLO and via gg QCD processes (LO)

(for 1 fb^{-1} , no BR included):

- Shape of the signal distribution depends very little on the Higgs boson mass or on the p_T cut for the tagging jets. Peak at $|\eta|\sim 3$. Full width at half-max ~ 2.8
- ullet Background falls off sharply beyond $|\eta|\sim 2$
- Motivates a simple WBF prescription:

$$\eta_{
m peak}-\eta_{
m width}/2<|\eta_j|<\eta_{
m peak}+\eta_{
m width}/2$$
 $j=j_1$ or $j=j_2$, $\eta_{
m peak}$ =3, and $\eta_{
m width}$ =2.8

• This is our working definition of the WBF region

H+2 Jet Production – μ dependence

• Higgs boson H production via WW scattering in NLO and via gg QCD processes (LO) hard-scale μ variation from $\mu=m_H/2$ to $\mu=2m_H$:

- Magnitude and shape of the signal distribution depend very little on μ : $\pm 2\%$
- Magnitude of the background shows significant uncertainty at LO; it is 70% greater at $\mu=m_H/2$, and 40% less at $\mu=2m_H$
- ullet This uncertainty in the irreducible background translates into uncertainty in the extraction of the coupling strenghts. To reduce the uncertainty, a differential NLO calculation is needed for the QCD background process H+2 jets

H+2 Jet Production – Event Rates for 1 fb $^{-1}$

• Event rates for the Hjj WBF signal(NLO) and Hjj background(LO), including our WBF requirement that at least one jet have $1.6 < |\eta| < 4.4$ (no BR included)

p_T cut [GeV]	20	40	80
Signal ($m_H=115$)	1374	789	166
Bkg	1196	382	92
Purity	0.53	0.67	0.64
Signal ($m_H=200$)	928	545	121
Bkg	534	179	46
Purity	0.63	0.75	0.72

• Recall
$$P = S/(S+B)$$

- Purity is independent of total integrated luminosity
- p_T cut of 40 GeV yields a good S/B across the range $m_H=115$ –200 GeV. p_T cut of 20 GeV is marginal
- Signal purities of $\sim 65\%$ for p_T cut $\gtrsim\!40$ GeV; purity is greater at the larger values of m_H

H+2 Jets – Derivation of Coupling Uncertainty

- ullet Both the signal (S) and the background (B) have H+2 jets; N= total number of H+2 jets observed
- Want the uncertainty $\delta g/g$ on the coupling of the Higgs boson to vector bosons
- Define $r=g_{\mathrm{observed}}^2/g_{\mathrm{predicted}}^2 o r=\frac{(N-B)}{S}$
- Uncertainty in *r*:

$$\delta r/r = \sqrt{(\delta S/S)^2 + ((\delta N)^2 + (\delta B)^2)/(N-B)^2}$$

In terms of purity P = S/(S + B)

$$\frac{\delta g}{g} = \frac{1}{2} \sqrt{(\frac{\delta S}{S})^2 + \frac{1}{P^2} (\frac{\delta N}{N})^2 + \frac{(1-P)^2}{P^2} (\frac{\delta B}{B})^2}$$

- Factor 1/P that multiplies $\delta N/N \to P < 1$ dilutes statistical power of data
- Factor (1-P)/P that multiplies $\delta B/B$ \to $P \to 1$ reduces role of uncertainty in B
- Size of background is included in P

Estimates of Uncertainties in S, B, and N

- Let $\delta S/S=5\%$ NLO effects are known; μ dep and PDF uncert are estimated
- Let $\delta B/B=30\%$ NLO effects not calculated yet for H+2 jets; μ dep of the NLO inclusive process is $\sim 20\%$ for $\frac{1}{2}m_H<\mu<2m_H$; PDF another $\sim 5\%$
- ullet For N and $\delta N/N$, we must specify decay modes of H
 - for $m_H=115$ GeV, pick $H\to \tau^+\tau^-$ with one τ decaying to hadrons and one to leptons combined branching ratio 0.033; use hadronic tagging efficiency 0.26; net reduction factor $\epsilon\sim 0.01$
 - for $m_H=200$ GeV, pick $H \to W^+W^-$; if both decay to leptons, $\epsilon \sim 0.036$
- "Low luminosity" minimum of $\sim 10~{\rm fb}^{-1}$ integrated luminosity is needed to discover H in the WBF process ATLAS, S. Asai et al hep-ph/0402254 one (good) year of LHC operation at $10^{33}~{\rm cm}^{-2}{\rm s}^{-1}$
 - $(S+B)\sim 12000 imes 0.01=120$ events at $m_H=115$ GeV and $p_T^{
 m cut}=40$ GeV; $\delta N/N\sim 10\%$
 - $(S+B)\sim7000\times0.036\sim250$ events at $m_H=200$ GeV and $p_T^{
 m cut}=40$ GeV; $\delta N/N\sim6\%$

Estimates of Uncertainties in S, B, and N

- "High luminosity" after 5 years of LHC operation, anticipate an integrated luminosity of $\sim 200~{\rm fb}^{-1}$
 - at $m_H=115$ GeV and $p_T^{\rm cut}=40$ GeV; $\delta N/N\sim 2\%$ in the au au mode
 - at $m_H=200$ GeV and $p_T^{
 m cut}=40$ GeV; $\delta N/N\sim 1.5\%$ in the WW mode

Coupling Uncertainty vs Signal Purity

- ullet If $\delta N/N \sim 10\%$ $\delta g/g \sim 10\%$ for P=0.7
- If $\delta N/N \sim 2\%$ $\delta g/g \sim 7\%$ for P=0.7
- Uncertainties in S and in B dominate uncertainty in g. With P=0.7 and $\delta N/N=2\%$, then $\delta S/S$ and $\delta B/B$ have to be reduced to 3% and 6% before statistics control the answer
- ullet P>0.65 permits $\delta g/g\sim 10\%$ after $200~{
 m fb}^{-1}$ Obtained for $p_T^{
 m cut}>40~{
 m GeV}$ at $m_H=115~{
 m GeV}$ and for $p_T^{
 m cut}>20~{
 m GeV}$ at $m_H=200~{
 m GeV}$
- Suppose $K_{
 m background}^{
 m NLO}\sim 1.6$ P=0.56 for $p_T^{
 m cut}>40$ GeV at $m_H=115$ GeV ightarrow $\delta g/g=13\%$ P=0.52 for $p_T^{
 m cut}>20$ GeV at $m_H=200$ GeV ightarrow $\delta g/g=15\%$

Comparisons with LC Estimates of Couplings

• HZZ coupling

- Higgs-strahlung is the dominant production process, $e^+e^- \to ZH$. Once the Z is identified, H is discovered in the missing mass distribution. The HZZ coupling strength is measured independently of the Higgs boson decay products
- Expected accuracy in $\Delta \sigma_{ZH}/\sigma_{ZH}$
 - For m_H in the range 120 to 160 GeV, Tesla TDR Part III, pp 26-27, quotes an expected statistical accuracy of $\pm 2.8\%$ (e^+e^- and $\mu^+\mu^-$ channels combined), plus $\pm 2.5\%$ systematics at $\sqrt{s}=350$ GeV and $500 {\rm fb}^{-1}$
 - ALC Working Group Snowmass 2001 Resource Book, p. 120, lists uncertainty of 6.5% at $m_H=120$ GeV, and 7% at $m_H=200$ GeV with $\sqrt{s}=500$ GeV and $500 {\rm fb}^{-1}$
- Expected accuracy in $\delta g_{ZZH}/g_{ZZH} \simeq 3\%$

LC Estimates (continued)

• *HWW* coupling

- Measurement of the HWW coupling is necessary to test the SU(2) relationship between HWW and HZZ.
- The usual method relies on the WBF process $e^+e^- o
 u ar{
 u} H$, plus knowledge of at least one H branching fraction. Signals and backgrounds for $H o b ar{b}$ are studied in detail in Desch and Meyer, LC-PHSM-2001-25 and Brau, Potter, Iwasaki, Snowmass 2001
- Expected accuracy in $\Delta \sigma_{
 uar{
 u}H}/\sigma_{
 uar{
 u}H}$
 - In the context of the SM, after expected uncertainties on the $BR(H\to b\bar b)$ are included, accuracies of 2.8% to 13% can be obtained for m_H in the range $120~{\rm GeV}$ to $160~{\rm GeV}$ at $\sqrt{s}=500~{\rm GeV}$ and $500{\rm fb}^{-1}$
- Expected accuracy in $\delta g_{WWH}/g_{WWH} \simeq 3\%$ to $\simeq 7\%$
- Knowledge of HWW coupling strength along with m_H allows one to compute the partial width Γ_W . If an independent measurement of $\mathrm{BR}(H \to WW^*)$ is also available, the Higgs boson total width Γ_H is obtained: $\Gamma_H = \Gamma_W/\mathrm{BR}(H \to WW^*)$

Summary

- ullet Studied H+2 jet production at the energy of the LHC. Fully differential hard matrix elements used to generate p_T spectra
- Investigated effectiveness of prescriptions to separate/enhance the WBF signal with respect to the irreducible QCD background
- ullet Evaluated the signal purity P (fraction of real H events produced by WBF) in each case as a function of the transverse momentum cut used to define the tagging jets
- After $200~{\rm fb}^{-1}$ are accumulated at the LHC, it may be possible to achieve an accuracy $\delta g/g \sim 10\%$ in the effective coupling (combination of HWW and HZZ) of the Higgs boson to weak bosons. (These estimates are less optimistic than those in the Les Houches 2003 study)
- ullet With a 500 GeV LC and $500 {
 m fb}^{-1}$, the expected accuracies are $\delta g_{ZZH}/g_{ZZH}\simeq 3\%$ for $120 < m_H < 200$ GeV and $\delta g_{WWH}/g_{WWH}\simeq 3\%$ to $\simeq 7\%$ for $120 < m_H < 160$ GeV

1. Introduction and Motivation

- The Higgs boson is expected to be produced at the LHC through various partonic production processes and observed in its decays to SM particles
 - gg
 ightarrow hX, with $h
 ightarrow \gamma \gamma$, $h
 ightarrow WW^*$, ZZ^* ;
 - $gg
 ightarrow t ar{t} h X$, with $h
 ightarrow b ar{b}$ or $h
 ightarrow \gamma \gamma$;
 - $qq \to hqqX$ via $W^+W^-(ZZ) \to hX$, with $h \to WW^*$, $h \to \gamma\gamma$, or $h \to \tau^+\tau^-$
- ullet The fully inclusive gluon-gluon fusion subprocess gg o hX is the dominant production mechanism; qq o H+2 jets is next in line (fi gure from M. Spira)

Generic Cuts

- ullet Generic cuts Figy et al. Jets from the Monte Carlo runs are clustered according to the k_T algorithm with
 - $p_T^{
 m jet} > 20$ GeV, to be raised
 - jet pseudo-rapidity $|\eta^{
 m jet}| < 4.5$, and
 - jet separation $\Delta R_{jj} = \sqrt{\Delta \eta_{jj}^2 + \Delta \phi_{jj}^2} > 0.8$
- The two jets with the highest p_T are chosen as the tagging jets and ordered in rapidity, $\eta_{j_1}<\eta_{j_2}$
- To approximate the acceptance for the Higgs boson decay products imagine a Higgs boson decay to two charged particles, denoted "leptons"
 - Require $p_T^{
 m lept}>20~{
 m GeV}$, $|\eta^{
 m lept}|<2.5$, $\Delta R_{j\ell}>0.6, \eta_{j_1}<\eta_{
 m lept}<\eta_{j_2}$
- Higgs decay products lie between the tagging jets

Coupling Uncertainty vs Signal Purity

- \bullet If $\delta N/N \sim 10\%$ $~~\delta g/g \sim 9\%$ ~~ for P=0.7
- \bullet If $\delta N/N \sim 2\%$ $~\delta g/g \sim 5\%$ for P=0.7
- New lower values of $\delta g/g$ are very similar to Düehrssen et al, Les Houches 2003 for comparable luminosity
- Not evident from these figures that there is much to gain from P > 0.7

Coupling Uncertainty vs Les Houches Results

 Scope of the Les Houches study is more ambitious, but the WBF results at high luminosity are quite similar

4. Alternative WBF Prescriptions

- \bullet We use the requirement that at least one jet have $1.6 < |\eta| < 4.4$
- A different prescription requires instead a rapidity separation requirement $|\eta_{j1}-\eta_{j2}|>4$
- Another requires an invariant mass cut $M_{jj}>800~{\rm GeV}$ \rightarrow Figures and Tables
- ullet With these alternatives, there is a significant gain in P for $p_T^{
 m cut}=20$ GeV, but not for larger values. The gain is accompanied by loss in signal rate at all p_T
- ullet Potential advantages of simple cut on $|\eta|$ of one jet in a high luminosity environment
 - In data (and at higher orders in QCD) there are several jets; our prescription may be easier to implement
 - In a high luminosity environment, with more than one event per beam crossing, selection on only one jet (plus the H) reduces chance that jets from different events are used
- ullet Full experimental simulation would be useful. One could begin with hard QCD LO H+2 jet matrix elements plus Pythia showering improvement over current ATLAS studies (c.f., S. Asai et al hep-ph/0402254)

H+2 Jet Production – Jet Rapidity Separation

• Higgs boson ${\it H}$ production via WW scattering in NLO and via gg QCD processes (LO) (for $1~{\rm fb}^{-1}$)

• Shape motivates a rapidity separation cut

$$|\eta_{j1} - \eta_{j2}| > 4$$

p_T cut [GeV]	20	40	80
Signal ($m_H=115$)	1297	718	137
Bkg	758	207	38
Purity	0.63	0.78	0.78
Signal ($m_H=200$)	911	521	106
Bkg	349	102	20
Purity	0.72	0.84	0.84

H+2 Jet Production – Jet Rapidity with Mass Cut

• Higgs boson ${\it H}$ production via WW scattering in NLO and via gg QCD processes (LO) (for $1~{\rm fb}^{-1}$)

• Alternative WBF prescription:

$$M_{jj} > 800 GeV$$

p_T cut [GeV]	20	40	80
Signal ($m_H=115$)	808	561	158
Bkg	304	183	82
Purity	0.73	0.75	0.66
Signal ($m_H=200$)	617	428	121
Bkg	157	95	43
Purity	0.80	0.82	0.74